If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2-1w-3=0
a = 10; b = -1; c = -3;
Δ = b2-4ac
Δ = -12-4·10·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-11}{2*10}=\frac{-10}{20} =-1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+11}{2*10}=\frac{12}{20} =3/5 $
| x/4+12=44 | | (-2.9)3x-5=(-2.9)4x+5 | | –3(j−18)=12 | | 3(j−18)=12 | | p^2=13p-22 | | 6x−30=180 | | y=9.75(1+.15)^(5) | | (8x-5)°+(3x+45)°=180° | | 5x-25=2x+5=90 | | 4x^2+6x+3/2=0 | | 105=6=11x | | 4x^2+6+3/2=0 | | 2=3x-30 | | (n-3)(n-4)(n-5)=720 | | 59/9(y+3)=40 | | 59(y+3)=40 | | 2X^2-a+4X=0 | | 8.0.4(x+2)=2 | | -3e+3=2e+22 | | p2−144=0 | | 5÷5+10=x | | 7x-10=6+3x | | 1/2(6c+8)+4=14 | | -2(-3+b)=-4 | | 5=x+4/6 | | r^2+2r-20=-3 | | 8w2+10w−3=0. | | X²+4x-240=0 | | 22+9=y/5 | | 13.4-x=-65.3 | | 2x+x+x+120°=360° | | (3x+8)3x=33 |